5 resultados para A2 gene

em National Center for Biotechnology Information - NCBI


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two transcription factors, C1 (a Myb-domain protein) and B (a basic-helix-loop-helix protein), mediate transcriptional activation of the anthocyanin-biosynthetic genes of maize (Zea mays). To begin to assess the mechanism of activation, the sequences required for C1- and B-mediated induction have been determined for the a2 promoter, which encodes an anthocyanin-biosynthetic enzyme. Analysis of a series of 7- to 13-base-pair substitutions revealed two regions crucial for activation. One region, centered at −99, contained a C1-binding site that abolished C1 binding. The other crucial region was adjacent, centered at −91. C1 binding was not detected at this site, and mutation of this site did not prevent C1 binding at −99. An oligonucleotide dimer containing these two crucial elements was sufficient for C1 and B activation of a heterologous promoter. These data suggest that activation of the anthocyanin genes involves C1 and another factor binding at closely adjacent sites. Mutating a previously postulated anthocyanin consensus sequence within a2 did not significantly reduce activation by C1 and B. However, sequence comparisons of the crucial a2 regions with sequences important for C1- and B-mediated activation in two other anthocyanin promoters led to a revised consensus element shared by these promoters.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To determine whether T-cell-receptor (TCR) usage by T cells recognizing a defined human tumor antigen in the context of the same HLA molecule is conserved, we analyzed the TCR diversity of autologous HLA-A2-restricted cytotoxic T-lymphocyte (CTL) clones derived from five patients with metastatic melanoma and specific for the common melanoma antigen Melan-A/MART-1. These clones were first identified among HLA-A2-restricted anti-melanoma CTL clones by their ability to specifically release tumor necrosis factor in response to HLA-A2.1+ COS-7 cells expressing this tumor antigen. A PCR with variable (V)-region gene subfamily-specific primers was performed on cDNA from each clone followed by DNA sequencing. TCRAV2S1 was the predominant alpha-chain V region, being transcribed in 6 out of 9 Melan-A/MART-1-specific CTL clones obtained from the five patients. beta-chain V-region usage was also restricted, with either TCRBV14 or TCRBV7 expressed by all but one clone. In addition, a conserved TCRAV2S1/TCRBV14 combination was expressed in four CTL clones from three patients. None of these V-region genes was found in a group of four HLA-A2-restricted CTL clones recognizing different antigens (e.g., tyrosinase) on the autologous tumor. TCR joining regions were heterogeneous, although conserved structural features were observed in the complementarity-determining region 3 sequences. These results indicate that a selective repertoire of TCR genes is used in anti-melanoma responses when the response is narrowed to major histocompatibility complex-restricted antigen-specific interactions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leishmania donovani is the etiologic agent of fatal visceral leishmaniasis in man. During their life cycle, Leishmania exist as flagellated promastigotes within the sandfly vector and as nonflagellated amastigotes in the macrophage phagolysosomal compartment of the mammalian host. The transformation from promastigotes to amastigotes is a critical step for the establishment of infection, and the molecular basis for this transformation is poorly understood. To define the molecular basis for amastigote survival in the mammalian host, we previously identified an amastigote stage-specific gene family termed “A2.” In the present study, we have inhibited the expression of A2 mRNA and A2 protein in amastigotes using antisense RNA and show that the resulting A2-deficient amastigotes are severely compromised with respect to virulence in mice. Amastigotes that did survive in the mice had restored A2 protein expression. These data demonstrate that A2 protein is required for L. donovani survival in a mammalian host, and this represents the first identified amastigote-specific virulence factor identified in Leishmania. This study also reveals that it is possible to study gene function in Leishmania through the expression of antisense RNA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to sense orientation relative to gravity requires dense particles, called otoconia, which are localized in the vestibular macular organs. In mammals, otoconia are composed of proteins (otoconins) and calcium carbonate crystals in a calcite lattice. Little is known about the mechanisms that regulate otoconial biosynthesis. To begin to elucidate these mechanisms, we have partially sequenced and cloned the major protein component of murine otoconia, otoconin-90 (OC90). The amino acid sequence identified an orphan chimeric human cDNA. Because of its similarity to secretory phospholipase A2 (sPLA2), this gene was referred to as PLA2-like (PLA2L) and enabled the identification of human Oc90. Partial murine cDNA and genomic clones were isolated and shown to be specifically expressed in the developing mouse otocyst. The mature mouse OC90 is composed of 453 residues and contains two domains homologous to sPLA2. The cloning of Oc90 will allow an examination of the role of this protein in otoconial biosynthesis and in diseases that affect the vestibular system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nucleotide sequences of four genes encoding Trimeresurus gramineus (green habu snake, crotalinae) venom gland phospholipase A2 (PLA2; phosphatidylcholine 2-acylhydrolase, EC 3.1.1.4) isozymes were compared internally and externally with those of six genes encoding Trimeresurus flavoviridis (habu snake, crotalinae) venom gland PLA2 isozymes. The numbers of nucleotide substitutions per site (KN) for the noncoding regions including introns were one-third to one-eighth of the numbers of nucleotide substitutions per synonymous site (KS) for the protein-coding regions of exons, indicating that the noncoding regions are much more conserved than the protein-coding regions. The KN values for the introns were found to be nearly equivalent to those of introns of T. gramineus and T. flavoviridis TATA box-binding protein genes, which are assumed to be a general (nonvenomous) gene. Thus, it is evident that the introns of venom gland PLA2 isozyme genes have evolved at a similar rate to those of nonvenomous genes. The numbers of nucleotide substitutions per nonsynonymous site (KA) were close to or larger than the KS values for the protein-coding regions in venom gland PLA2 isozyme genes. All of the data combined reveal that Darwinian-type accelerated evolution has universally occurred only in the protein-coding regions of crotalinae snake venom PLA2 isozyme genes.